
Modeling Multi-Threaded Processors

Symmetric multi-processing (SMP) has been employed by computer makers for some time.
Multiple processors are connected to a common memory pool and a combination of hard-
ware and operating system functions permit work to be balanced across the entire unit. Each
processor had a single “thread” that processed programming instructions.

Recently chip manufacturers added additional threads to the processors to further increase
efficiency of the chips. The added capacity of multi-threaded processors is welcomed but they
provide some challenges for the capacity planner. As work is added to a system, multi-threaded
CPU cores perform differently from multiple single-threaded CPU cores in a symmetric multi-
processing (SMP) environment. The meaning of per-process CPU time measurements depend
upon chip technology, therefore measurement results and expected future performance may not
be intuitively obvious any more.

This paper explains a conceptual architecture developed for modeling multi-threaded
processors and the new functionality provided in TeamQuest Model to support multi-
threaded processors. A modeling example using Linux on Intel chips will be provided to aid your
understanding.

About the Author
David Burgart, Principal Engineer, has been with TeamQuest
since its inception in 1991. Mr. Burgart specializes in
TeamQuest’s flagship capacity modeling technology and is
one of the primary architects for the capabilities described
in this paper.

WHITE PAPER

http://www.teamquest.com

Single-threaded Versus Multi-threaded
Symmetric Multiprocessing

Let’s begin by comparing older single-threaded SMP technology
with newer multi-threaded technologies. In both cases, the CPU chip
is the hardware component that provides the instruction processing
capability. Within each chip there may be multiple CPU cores, and
each core contains the complete functionality of what we used to
consider a CPU.

In traditional symmetric multiprocessing, each
CPU core supports a single hardware instruction
thread that interfaces with the operating system
(diagram on left in Figure 1). When activating
multi-threading, each core supports multiple
hardware instruction threads, each interfacing
with the operating system. Each hardware in-
struction thread is recognized by the operating
system as a logical CPU.

Older SMP systems exhibited performance
limitations as more CPU’s were added to a configuration. For those of
us familiar with the history of mainframe computers, we saw that each
incremental processor added a lesser amount of additional capacity.
In fact, one vendor, Amdahl Corporation, increased the computational
power of the last two processors in their 12-way computer in order to
overcome the SMP shortfall. These limitations resulted from
hardware and operating system architectures designed to
ensure data integrity through the use of various tactics such as
signaling and locks. Over the years, all the major vendors have made
significant improvements in this area. As a result, most SMP
systems today have near linear performance scaling in the hardware
and operating systems.

In a multiprocessing architecture, there are two approaches to
providing additional processing power. Each additional core,
bearing a single logical CPU, delivers a nearly equal quantity of
CPU capacity. In most of today’s architectures, this results in a
commensurate increase in capacity when cores are added. The multi-
threading option adds multiple threads to each core. Each thread
adds some additional amount of CPU capacity. However, because
these threads share the CPU core resources, the addition of a thread
typically delivers only a portion of the capacity of a single-threaded
core.

Examples of multi-threaded chips include Sun UltraSPARC T1 and
T2, SPARC64 VII, Intel Xeon, Intel Itanium2, Intel Pentium 4, IBM
POWER5 and IBM POWER6.

Copyright © 2008 TeamQuest Corporation. All Rights Reserved. Subscribe

2 of 10 Modeling Multi-threaded Processors WHITE PAPER

Figure 1

http://www.teamquest.com/subscribe/index.htm

Performance Scaling in Multi-threaded Systems

When more threads are added to cores in multi-threaded systems,
performance depends upon chip technologies. All deviate from a
linear growth line graph once you get beyond the point where a
single thread is active on each core and core resources are shared.
Chip performance differences as seen during TeamQuest testing can
be seen in Figure 2.

Intel Xeon (2 chips, 2 cores per chip, 2 threads per core)
delivers minimal performance gain once four threads are
exceeded.

Sun UltraSPARC T1 (1 chip, 4 cores per chip, 4 threads per
core) shows a linear increase in performance up to four
threads, slightly degraded performance when there are two
threads per core active, and then only nominal gain after
core sharing increases as more than two threads become
active.

IBM POWER5 (4 chips, 2 cores per chip, 2 threads per core),
shows linear gain up to eight threads (one per core) and
then the gain per thread drops from that point forward.

Where performance becomes non-linear, it is because more than
one thread has become active on a CPU core.

Similarly, when you view transaction behavior with multi-threaded
CPUs you see some interesting results. Figure 3 displays testing
results from a transaction that executes a fixed number of
instructions and a CPU core that supports four threads per core.
If only one thread is active, each transaction will complete in one
second. If two threads are active per core it will take 1.25 seconds

for the same transaction. If three threads are active, each
transaction will take about 1.6 seconds. If four threads are
active, each transaction will take about 2.1 seconds. The
behavior of transaction, therefore, depends on how many
simultaneous logical CPU threads are active on a core.
The results show that the best performance for a single
transaction comes when there is only one CPU hardware
thread is active on the core on which it is consuming
resources.

However, even though each logical CPU runs slower when
multiple threads (logical CPUs) are active, there is a greater total
capacity. It is the same whether two active threads on a core or
more. The best throughput (transactions completed per second)
occurs when all CPU hardware threads are active.

Copyright © 2008 TeamQuest Corporation. All Rights Reserved. Subscribe

3 of 10 Modeling Multi-threaded Processors WHITE PAPER

Figure 2

Figure 3

http://www.teamquest.com/subscribe/index.htm

Revised Modeling Approach

When modeling multi-threaded environments the statistics are
collected when multiple threads in the core are active, but the model
tool requires as input the CPU service requirement when a single
thread is active in the CPU. This will require some computation on
the collected statistics.

The ideal statistics needed for precise modeling of multi-threaded
environments are:

• Number of active threads per core
• Time spent on CPU
• Change in workload performance

Then we could use the formula here to compute a service time that
reflects how a transaction would behave if a single thread was
active.

Unfortunately, vendors don’t provide this level of detail in multi-
threaded chips. To overcome the problem, we use available CPU
statistics such as CPU seconds and logical CPU % busy. Then we
solve a small model, with no user intervention, when the model is
loaded to compute the single thread CPU service requirements.

TeamQuest Model has included the concept of a load-dependent
server for some time, but it is now being put to a new use; it has been
employed to model the CPU Active Resource Queue. An LDS server
is where the rate of service varies depending on the queue length.
When modeling CPU Active Resource Queue in a multi-threaded
environment, LDS is activated and CPU Active Resource Type is
displayed as “THREAD.”

The LDS requires the use of speedup factors. Since there are
diminishing returns when adding threads to a core, speedup factors
are necessary to maintain accuracy when adding threads to cores
within the LDS. TeamQuest Model contains default speedup factors
for many popular CPUs. The default speedup factors that we provide
come from a combination of industry literature and our own testing
experience. If you have performed application scalability testing in
such environments and your application scales differently, Model
provides a way for you to change the default values to better reflect
your environment.

Copyright © 2008 TeamQuest Corporation. All Rights Reserved. Subscribe

4 of 10 Modeling Multi-threaded Processors WHITE PAPER

Service = time spent on CPU
workload perf. change

active threads per core
x

http://www.teamquest.com/subscribe/index.htm

The TeamQuest Model GUI now has several changes which make it
easy to model today’s multi-threading architectures. Instead of only
being able to define CPU hardware using a CPU equipment name
and the Number of CPUs, The hardware dialog box now expands the
options to include a CPU equipment name, number of chips, number
of cores per chip, and the number of threads per core. Most of the
time TeamQuest Model knows the details for commonly used chips.

Speedup factors are also easy to adjust using the new GUI. A
dialog box appears with the default speedup factor for the System Type
selected and the number of threads per core that was specified.
This is where you can adjust the default speedup factors with data
derived from your own application tests or other credible sources.

On Windows, Linux, HP-UX, and VMware platforms with Intel hyper-
threaded CPU hardware, you can control whether multi-threading is
on or off at the CPU or hardware level. The Physical CPU Settings
dialog box (accessed via the Active Resources spreadsheet by
pressing the button in the Number of Servers column) allows you
to control hyper-threading on or off just as you can with the real
hardware. The hardware is capable of two threads per core, but if
you set hyper-threading to “Off” the resulting number of servers per
core will be reported as one.

The IBM AIX platform also has controls to turn Simultaneous Multi-
threading on or off, but it is controlled at the Logical CPU level, not
the Physical CPU or hardware level. Press the button in the logical
CPU Number of Servers column and you will see the Logical CPU
Settings dialog box. Here you can control the number of virtual CPUs
that are assigned to this logical system and whether multi-threading
is on or off at the logical system.

Sun Solaris platforms do not have any controls to turn multi-
threading on or off. It is always on.

TeamQuest Model Reporting Changes

In a traditional single-threaded SMP CPU architecture, the Active
Resource statistic Service Time is always equal to the Effective
Service Time. Therefore, when there are not any other bottlenecks in
the system the CPU utilization will grow at a linear rate.

Copyright © 2008 TeamQuest Corporation. All Rights Reserved. Subscribe

5 of 10 Modeling Multi-threaded Processors WHITE PAPER

http://www.teamquest.com/subscribe/index.htm

This is no longer true with a multi-threading CPU architecture. When
the CPU has more than a minimal utilization, the Effective Service
Time will sometimes be greater than the Service Time. Figure 4B
shows how multi-threading deviates from a traditional SMP straight-
line trend line (Figure 4A).

In the case of this Solaris system using a Sun UltraSPARC T1
processor with four threads per core, the service time is indeed less
than the effective service time. At low utilizations when there is only
one thread per core active, however, it is likely that the service time
will equal the effective service time and the utilization growth will
be linear until more than one thread per core is active. But as the
processor gets busier and more threads become active within the
core, effective service will get progressively larger than the service
time and the utilization growth will be larger than linear.

A Simple Example

To show the power of the
new modeling capabilities of
TeamQuest Model, we will use
a Linux system running a Xeon
CPU with 2 chips, 2 cores per
chip and 2 threads per core for
a total of eight logical CPUs.
We first model this system with
multi-threading is turned off.
This model will act like an SMP
processor with four servers.

Copyright © 2008 TeamQuest Corporation. All Rights Reserved. Subscribe

6 of 10 Modeling Multi-threaded Processors WHITE PAPER

Figure 4A: Single-threaded architecture Figure 4B: Multi-threaded architecture

Figure 5

http://www.teamquest.com/subscribe/index.htm

When this model is solved with
multi-threading turned off, the
stretch factor for a mission
critical workload is calculated
to be 2.2. Stretch factor is
an industry-accepted way to
portray normalized response
time delays. As a rule-of-thumb,
it makes sense to consider
changes whenever stretch fac-
tor is greater two.

CPU Utilization is calculated to
be 88%.

Now we are going to change
the Intel CPU so that hyper-
threading is on, resulting
in the number of servers
increasing from four to eight. As
previously mentioned, we
will press the button in the
Number of Servers column for
the physical CPU. The Physical
CPU Settings dialog appears.

Copyright © 2008 TeamQuest Corporation. All Rights Reserved. Subscribe

7 of 10 Modeling Multi-threaded Processors WHITE PAPER

Figure 6

Figure 7

Figure 8

http://www.teamquest.com/subscribe/index.htm

We chose the “On” radio button in the Hyper-threading group box
and press OK. The Number of servers is now eight. Now let’s solve
this model and see how the results change.

The stretch factor drops
approximately 1.54 compared
to 2.22 when hyper-threading
was turned off.

Similarly, CPU utilization when
multi-threading is turned on
has reduced to approximately
57% from 88% when hyper-
threading was turned off.

As you can see, this application benefits from operating in
a multi-threaded environment. CPU utilization was reduced
dramatically, making headroom for more work and extending the life
of the asset.

Copyright © 2008 TeamQuest Corporation. All Rights Reserved. Subscribe

8 of 10 Modeling Multi-threaded Processors WHITE PAPER

Figure 9

Figure 10

http://www.teamquest.com/subscribe/index.htm

Summary

As you can see, there are substantial differences between single-
threaded and multi-threaded architectures. In order to deal with
the changes, TeamQuest has incorporated a number of changes to
facilitate your capacity planning activities when employing modeling
techniques for multi-threaded architectures. The new capabilities
combined with the easy-to-use TeamQuest Model interface makes
it easy to predict application and service performance on the new
multi-threaded architectures.

You need to be cognizant of the differences between the single-
and multi-threaded technologies and understand their impacts on
your applications and services. Armed with that information and
TeamQuest Model’s new capabilities, you will be able to easily
predict future performance, no matter what technology you choose.

Copyright © 2008 TeamQuest Corporation. All Rights Reserved. Subscribe

9 of 10 Modeling Multi-threaded Processors WHITE PAPER

http://www.teamquest.com/subscribe/index.htm

TeamQuest Corporation
www.teamquest.com

Americas
One TeamQuest Way
Clear Lake, Iowa 50428
USA
+1 641.357.2700
+1 800.551.8326
info@teamquest.com

Europe, Middle East and Africa
Box 1125
405 23 Gothenburg
Sweden
+46 (0)31 80 95 00
United Kingdom
+44 (0)1865 338031
Germany
+49 (0)69 6 77 33 466
emea@teamquest.com

Asia Pacific
Units 1001-4 10/F
China Merchants Bldg
152-155 Connaught Rd Central
Hong Kong, SAR
+852 3571-9950
asiapacific@teamquest.com

Copyright © 2008 TeamQuest Corporation
All Rights Reserved

TeamQuest and the TeamQuest logo are registered trademarks in the US, EU, and elsewhere. All other trademarks and service marks are the
property of their respective owners. No use of a third-party mark is to be construed to mean such mark’s owner endorses TeamQuest
products or services.
The names, places and/or events used in this publication are purely fictitious and are not intended to correspond to any real individual,
group, company or event. Any similarity or likeness to any real individual, company or event is purely coincidental and unintentional.
NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THE DOCUMENT. Any product and related material disclosed herein are only furnished
pursuant and subject to the terms and conditions of a license agreement. The only warranties made, remedies given, and liability accepted
by TeamQuest, if any, with respect to the products described in this document are set forth in such license agreement. TeamQuest cannot
accept any financial or other responsibility that may be the result of your use of the information in this document or software material,
including direct, indirect, special, or consequential damages.
You should be very careful to ensure that the use of this information and/or software material complies with the laws, rules, and regulations
of the jurisdictions with respect to which it is used.
The information contained herein is subject to change without notice. Revisions may be issued to advise of such changes and/or additions.
U.S. Government Rights. All documents, product and related material provided to the U.S. Government are provided and delivered subject to
the commercial license rights and restrictions described in the governing license agreement. All rights not expressly granted therein are
reserved.

mailto:asiapacific@teamquest.com?Subject=VMware White Paper
mailto:emea@teamquest.com?Subject=VMware White Paper
mailto:info@teamquest.com?Subject=VMware White Paper
http://www.teamquest.com

	Button 1:
	Button 2:
	Button 3:
	Button 4:
	Button 5:
	Button 6:
	Button 7:
	Button 8:
	Button 9:
	Button 12:
	Button 13:
	Button 14:
	Button 15:

